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Abstract
A molecular chain with rotational degrees of freedom and quadrupolar interaction between
linear molecules is investigated theoretically. Rotation of the molecules is in the plane of an
adsorbing surface only and their centres of gravity are pinned. Continual nonlinear wave
equations are derived for the rotational excitations of the molecules from the discrete ones. The
oscillations of the molecules near the equilibrium positions are investigated. The interactions
are expanded in powers of angles and nonlinear terms are accounted for. Dispersion is
considered to be small. The normal modes are found to split the initial entangled nonlinear
system into two independent equations. A Linear equation describes waves of the stiffer normal
mode. A nonlinear equation describes waves of the softer normal mode. A nonlinear
Schrödinger equation is derived for waves of the softer normal mode, and a solution for
nonlinear waves is obtained.

1. Introduction

Molecular crystals have been investigated extensively because
of their unusual electric and thermal conductivity and structural
properties [1, 2]. Molecular cryocrystals [2] are interesting
for applications in low temperature techniques, and they
have the simplest molecules with well known interactions.
A considerable number the properties of molecular crystals
are connected with rotation of their molecules or molecular
fragments which, in the case of a linear configuration, are
described by the rigid rotors model. However, molecular
cryocrystals, as almost model objects, have a complicated
crystal structure with some sublattices and space rotor
rotation. A considerable simplification of their description,
while still keeping the basic physical features, is found by
application of chain models to the linear lattice dynamics and
thermodynamics of molecular cryocrystals [2].

Low dimensional systems are very important as models
as well as objects for applications. Real objects can be
adsorbed structures [3] or layered crystals [4]. Chain models
are a necessary stage in the investigation of the dynamics
and thermodynamics of more complex systems: crystals [5],
nonlinear dynamics of atomic and molecular lattices [6] and
their thermal conductivity [7]. The complexity of models
even for a 1D molecular chain requires some approximations

to simplify the system description. Such approximations
are in the model potential and 1D rotation of the molecular
rotors [2, 3, 7]. After these essential simplifications, analytical
consideration is constricted by the limits of small oscillation or
free rotation of rotors, i.e. the limits of low and high energies.
In the middle range of energies, especially in the vicinity of
the point of orientational melting, an analytical description
of the molecular rotor dynamics and thermodynamics
is absent.

In the present paper we investigate the rotational nonlinear
wave excitations of an ordered molecular chain in the range
from the low energy limit to the point of orientational
melting. The molecular chain consists of linear molecules with
realistic quadrupolar interaction [2]. It was natural to begin
investigation of this complex problem starting from simpler
cases such as linear rotational oscillations [8, 9] or the long-
wave limit for arbitrary amplitudes and nonlinearity [10] in our
previous works. Here we use the same model approximations
as in [8–10] and earlier in [2, 3]: one degree of freedom
for each molecule, and very hard translational potential, so
translational modes are frozen and can be neglected. The
rotational potential energy was obtained by supposing nearest
neighbour interaction only; the next neighbour contribution is
much less. The molecular chain energy was found to have a
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minimum value for alternating ordering of the molecules:

(φ2n = π/2 + π j ;φ2n+1 = π j) or

(φ2n = π j ;φ2n+1 = π/2 + π j).
(1)

Here i, j, n = 0,±1,±2, . . . , an angle φi is between the
principal axis of a molecule and the direction of the radius-
vector which connects the centres of inertia of the i th and
(i + 1)th molecules. Therefore, the molecular system splits
into two sublattices and index i = 2n(i = 2n + 1) defines an
even (odd) site. To research the time or space evolution of the
molecular chain we must write the Lagrangian L = K − U
of the system. Here U and K = 1

2

∑
Ji φ̇

2
i are potential and

kinetic energies of the chain, the i th molecule has moment of
inertia Ji = J0 and angular velocity φ̇i . Then the Lagrangian
variation yields a system of equations for the chain motion in
even (φ2m) and odd (ψ2m+1) sites:

φ̈i − {2a sin 2φi + b[sin 2(φi − ψi−1)+ sin 2(φi − ψi+1)]
+ c[sin 2(φi + ψi−1)+ sin 2(φi + ψi+1)]} = 0;

ψ̈i+1 − {2a sin 2ψi+1 + b[sin 2(ψi+1 − φi )

+ sin 2(ψi+1 − φi+2)] + c[sin 2(ψi+1 + φi)

+ sin 2(ψi+1 + φi+2)]} = 0.

(2)

Here the parameters of quadrupolar–quadrupolar interac-
tion are a = 5/4, b = 3/8, c = 35/8, � = 3Q2/4R5

0, where
Q is a quadrupolar moment of a molecule and R0 is a distance
between centres of inertia of the molecules. The dimension-
less time is introduced: t → τ = tω0 where ω2

0 = �/J0 is a
characteristic frequency.

Stability of the structure (1) was confirmed by analysis
of the dynamical equations (2) as in the linear approxima-
tion [8, 9] and the long-wave limit for arbitrary amplitudes
and nonlinearity [10] when all even or odd sites are equivalent.
Previously we found the rotational excitations demonstrate a
strong anisotropy in the angle space—directions of easy exci-
tation (‘valleys’ on the effective potential) exist. By accounting
for the strong anisotropy, it is possible to consider linear and
nonlinear oscillations separately.

2. The continual equations for an inhomogeneous
chain

The system of equations (2) is strongly nonlinear and
differential-difference. Let us rewrite these equations for
the two subsystems that follows from separation of the
molecules into two sublattices and introduce new variables.
Transformation from a discrete to a continual system of
equations is not unambiguous. We suggest some set of steps
(ansatz) which have to lead to a proper result.

(1) Here we use more convenient variables to account
for the difference between the sites. It is natural to begin
investigation of this complex problem by starting from the
limiting case of small oscillations of molecules around the
equilibrium positions [8, 9]. With this purpose new variables
were introduced by the relations φ2m = v2m;φ2m+1 = π/2 +
u2m+1, where v2m and u2m+1 are small deviations of the angles

from the equilibrium positions. After expansion of terms as
power series in small perturbations v and u, the set of equations
for the motion can be transformed into a linear system of
differential-difference equations [8, 9]. Now we account for
the cubic contributions in this expansion.

(2) Let us find expansion of the variables v and u around
values in the i th and i + 1th sites. Then we introduce the
dimensionless space coordinate:

ξ = x

R0
. (3)

Let us note that	x = 2R0 and	ξ = 2. Then expansions
can be written as vi+2 = vi +2v′

i +2v′′
i ; ui−1 = ui+1 −2u′

i+1+
2u′′

i+1. Here derivations are v′ = ∂v/∂ξ and v′′ = ∂2v/∂ξ 2,
the same formulae we have for u, u′, u′′. After substitution
of expansions in the system (2) then grouping of the angles
and their space derivations we obtain a system of continual
dynamical nonlinear differential equations for the variables
v ≡ v2m and u ≡ u2m+1:

v̈ + bvv + 2du + du′′ − 2
3 bvv

3 − 4dv2u − 4(b + c)vu2

− 4
3 du3 = 0;

ü + buu + 2dv + dv′′ − 2
3 buu3 − 4du2v − 4(b + c)uv2

− 4
3 dv3 = 0.

(4)

Here parameters are bv = 4(−a + b + c) = 14, bu = 4(a +
b + c) = 24, d = 2(c − b) = 8. We suppose relatively smooth
changing of the orientation of the molecules. This means that
derivations are relatively small: v′′, u′′ � v′, u′ � v, u.
The system describes any nonlinear space- and time-dependent
processes in the molecular chain for relatively large angular
amplitudes.

(3) The attractive feature of the system (4) is symmetry in
the coordinates v, u and the interaction parameters under pair
exchange:

v, bv ←→ u, bu . (5)

We will explore this symmetry and the properties of the
parameters in further simplification of the equations and
investigation of nonlinear excitations.

3. Integral of the equations for an inhomogeneous
chain

(4) With the aim of further progress, let us consider
inhomogeneous stationary excitations when v and u depend on
x −V t . Here V is velocity. In dimensionless variables we have
v(ζ ), u(ζ ); ζ = ξ − wτ . Here w = v/v0 is the dimensionless
velocity and v0 = R0ω0 is the characteristic one.

After introducing these coordinates the time-dependent
terms are transformed into v̈ → w2v′′ and ü → w2u′′ where
v′′ = ∂2v/∂ζ 2 and u′′ = ∂2u/∂ζ 2. Instead of the system
of partial differential equations (4) we obtain the common
differential one:
w2v′′ + bvv + 2du + du′′ − 2

3 bvv
3 − 4dv2u − 4(b + c)vu2

− 4
3 du3 = 0;

w2u′′ + buu + 2dv + dv′′ − 2
3 buu3 − 4du2v

− 4(b + c)uv2 − 4
3 dv3 = 0.

(6)
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The integral of this system still keeps symmetry, according
to (5):
1
2w

2(v′2 + u′2)+ 1
2 (bvv

2 + buu2)+ 2dvu + dv′u′

− 1
6 (bvv

4 + buu4)− 4
3 dv3u − 8(b + c)v2u2

− 4
3 dvu3 = C. (7)

4. Normal modes equations and solutions

(5) The variables v and u are entangled in the nonlinear
system of equations (4) and (6). Besides different variables
have the same or very close amplitudes for linear [8, 9] and
nonlinear [10] excitations of the molecular chain. Meanwhile
introduction of the normal coordinates [9] splits the linear
system of equations for the chain oscillations into two
independent subsystems of oscillations; amplitudes of the
obtained normal modes differ considerably. The linear system
of equations can be obtained by omitting cubic terms in the
nonlinear equations (4) and (6).

Let us introduce a normal coordinates for the linear
subsystem of equations (6). Then both quadratic forms for
variables u, v and their derivations u′, v′ must be split in
equations (6) and diagonalized in the integral (7). Operating
with any of the equations (6) or (7) leads to the same result.
We diagonalize the quadratic forms according [11]. The first
step is diagonalization of the u′, v′ form. Let us introduce new
variables by the coordinate rotation on the angle α1. Their
substitution into (7) diagonalizes the u′, v′ quadratic form for

u = u1 + v1√
2

; v = u1 − v1√
2

. (8)

Then after transformation (finding their sum and
difference), each of equations (6) contains only one second
derivation. The second step is the space deformation of
variables with the purpose of obtaining equal coefficients
before derivations: u1 = u2/

√
w2 + d; v1 = v2/

√
w2 − d .

As a consequence of this deformation any further rotations do
not change the quadratic form of the derivations. The third step
is rotation of coordinates on the angle α3 which diagonalizes
the u, v quadratic form. Coefficients before u3v3 terms equal
zero if the angle α3 satisfies the condition

cos 2α3 = G
√

4(bu − bv)2(w4 − d2)+ G2
;

G = (bu + bv − 4d)(w2 + d)− (bu + bv + 4d)(w2 − d).
(9)

As result of all transformations, the final view of
equations (6) is:

v′′
3 + 1

λ2+
v3 − 1

3
bv3v

3
3 + O(u3) = 0;

u′′
3 + 1

λ2−
u3 + buv2u3v

2
3 + bu0v3v

3
3 + O(u2

3) = 0.

(10)

Here characteristic dimensionless lengths are

λ2
± =

√
4(bu − bv)2(w4 − d2)+ G2 ± G+

4(bubv − 4d2)
;

G+ = (bu + bv − 4d)(w2 + d)+ (bu + bv + 4d)(w2 − d).
(11)

The inequality λ+ � λ− is satisfied. This means
that normal variable v3 is considerably softer than u3 one.
Therefore, a variation interval for v3 is considerably wider
than that for u3: we can write an inequality v3 � u3 and
neglect the higher powers O(u3) in equations (10). So the first
equation in the nonlinear system (10) becomes independent.
As one can see in relations (9), (11) and the definition of v2,
the obtained equations for nonlinear waves describe a situation
with threshold velocity w2 > d .

Coefficients bv3, buv2, bu0v3 before the nonlinear terms
are very cumbersome to write here. Nevertheless, their
physical sense is obvious. In the first equation, the term with
coefficient bv3 describes nonlinearity of a soft normal mode
with considerably large amplitude. In the second equation,
the term with coefficient buv2 slightly renormalizes the fast
characteristic length λ− (or frequency) in dependence on the
slow variable v3. In the second equation, the term with
coefficient bu0v3 slightly shifts the equilibrium position of
the fast oscillator u3 in dependence on the slow variable v3.
According to the second equation of the system (10) the
variable u3 oscillates with a relatively small space period λ−
accounting for the influence of v3.

The first equation in (10) can be transformed into a
nonlinear Schrödinger one with well known solutions. The first
equation in system (10) has negative parameter of nonlinearity,
its periodic solution can be written according to [12] as

v3(ζ ) = k
√

g

4δs
sn

[
gζ

4δs
, k

]

; k2 =
γ −

√
γ 2 − γ 2

0

γ +
√
γ 2 − γ 2

0

;

δs = K (k)− E(k); g = bv3

3
; γ = 3

2bv3λ
2+
.

(12)
Here K (k), E(k) are the complete elliptic integrals of the

first and second order with elliptic module k, and sn(x, k) is
the elliptic sinus, γ 2

0 is the integral of equation (10a) which
has the sense of energy. At γ0 → γ for most of the time the
molecules are far from the equilibrium positions (close to the
saddle points of the effective potential [10]). At γ0 = γ the
solution (12) transforms into a kink.

5. Conclusion

For the first time the nonlinear excitations close to the point
of orientational melting were considered. We use the strong
anisotropy of the molecular rotation on the plane of the angles
(‘valleys’). Building of the normal coordinates on the plane
of the angles gives the possibility of splitting equations for
linear and nonlinear molecular chain oscillations. The linear
oscillations correspond to a stiffer subsystem and are stable.
The nonlinear oscillations correspond to a softer subsystem
and, therefore, easily reach an unstable states (bifurcation
points of the dynamical system).

It would be interesting to apply the obtained results in
the nonlinear dynamics of molecular crystals to investigate
the thermodynamics and kinetic properties in regions close to
orientational melting.
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